Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Clin Transl Sci ; 17(2): e13734, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38380580

RESUMO

Remote inflammation monitoring with digital health technologies (DHTs) would provide valuable information for both clinical research and care. Controlled perturbations of the immune system may reveal physiological signatures which could be used to develop a digital biomarker of inflammatory state. In this study, molecular and physiological profiling was performed following an in vivo lipopolysaccharide (LPS) challenge to develop a digital biomarker of inflammation. Ten healthy volunteers received an intravenous LPS challenge and were monitored for 24 h using the VitalConnect VitalPatch (VitalPatch). VitalPatch measurements included heart rate (HR), heart rate variability (HRV), respiratory rate (RR), and skin temperature (TEMP). Conventional episodic inpatient vital signs and serum proteins were measured pre- and post-LPS challenge. The VitalPatch provided vital signs that were comparable to conventional methods for assessing HR, RR, and TEMP. A pronounced increase was observed in HR, RR, and TEMP as well as a decrease in HRV 1-4 h post-LPS challenge. The ordering of participants by magnitude of inflammatory cytokine response 2 h post-LPS challenge was consistent with ordering of participants by change from baseline in vital signs when measured by VitalPatch (r = 0.73) but not when measured by conventional methods (r = -0.04). A machine learning model trained on VitalPatch data predicted change from baseline in inflammatory protein response (R2 = 0.67). DHTs, such as VitalPatch, can improve upon existing episodic measurements of vital signs by enabling continuous sensing and have the potential for future use as tools to remotely monitor inflammation.


Assuntos
Lipopolissacarídeos , Dispositivos Eletrônicos Vestíveis , Humanos , Sinais Vitais , Inflamação/diagnóstico , Biomarcadores
2.
Arthritis Rheumatol ; 75(2): 279-292, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36482877

RESUMO

OBJECTIVE: This study was undertaken to identify key disease pathways driving conventional dendritic cell (cDC) alterations in systemic sclerosis (SSc). METHODS: Transcriptomic profiling was performed on peripheral blood CD1c+ cDCs (cDC2s) isolated from 12 healthy donors and 48 patients with SSc, including all major disease subtypes. We performed differential expression analysis for the different SSc subtypes and healthy donors to uncover genes dysregulated in SSc. To identify biologically relevant pathways, we built a gene coexpression network using weighted gene correlation network analysis. We validated the role of key transcriptional regulators using chromatin immunoprecipitation (ChIP) sequencing and in vitro functional assays. RESULTS: We identified 17 modules of coexpressed genes in cDCs that correlated with SSc subtypes and key clinical traits, including autoantibodies, skin score, and occurrence of interstitial lung disease. A module of immunoregulatory genes was markedly down-regulated in patients with the diffuse SSc subtype characterized by severe fibrosis. Transcriptional regulatory network analysis performed on this module predicted nuclear receptor 4A (NR4A) subfamily genes (NR4A1, NR4A2, NR4A3) as the key transcriptional regulators of inflammation. Indeed, ChIP-sequencing analysis indicated that these NR4A members target numerous differentially expressed genes in SSc cDC2s. Inclusion of NR4A receptor agonists in culture-based experiments provided functional proof that dysregulation of NR4As affects cytokine production by cDC2s and modulates downstream T cell activation. CONCLUSION: NR4A1, NR4A2, and NR4A3 are important regulators of immunosuppressive and fibrosis-associated pathways in SSc cDCs. Thus, the NR4A family represents novel potential targets to restore cDC homeostasis in SSc.


Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Escleroderma Sistêmico , Humanos , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Regulação da Expressão Gênica , Expressão Gênica , Escleroderma Sistêmico/genética , Fibrose , Glicoproteínas/metabolismo , Antígenos CD1/genética
3.
J Nutr ; 152(4): 994-1005, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-36967189

RESUMO

BACKGROUND: Structure and protein-starch interactions in pasta products can be responsible for lower postprandial glycemic responses compared with other cereal foods. OBJECTIVES: We tested the effect on postprandial glucose metabolism induced by 2 pasta products, couscous, and bread, through their structural changes during mastication and simulated gastric digestion. METHODS: Two randomized controlled trials (n = 30/trial) in healthy, normal-weight adults (mean BMI of 23.9 kg/m2 (study 1) and 23.0 kg/m2 (study 2)) evaluated postprandial glucose metabolism modulation to portions of durum wheat semolina spaghetti, penne, couscous, and bread each containing 50 g available carbohydrate. A mastication trial involving 26 normal-weight adults was conducted to investigate mastication processes and changes in particle size distribution and microstructure (light microscopy) of boluses after mastication and in vitro gastric digestion. RESULTS: Both pasta products resulted in lower areas under the 2-h curve for blood glucose (-40% for spaghetti and -22% for penne compared with couscous; -41% for spaghetti and -30% for penne compared with bread), compared with the other grain products (P < 0.05). Pasta products required more chews (spaghetti: 34 ± 18; penne: 38 ± 20; bread: 27 ± 13; couscous: 24 ± 17) and longer oral processing (spaghetti: 21 ± 13 s; penne: 23 ± 14 s; bread: 18 ± 9 s; couscous: 14 ± 10 s) compared with bread or couscous (P < 0.01). Pastas contained more large particles (46-67% of total particle area) compared with bread (0-30%) and couscous (1%) after mastication and in vitro gastric digestion. After in vitro gastric digestion, pasta samples still contained large areas of nonhydrolyzed starch embedded within the protein network; the protein in bread and couscous was almost entirely digested, and the starch was hydrolyzed. CONCLUSIONS: Preservation of the pasta structure during mastication and gastric digestion explains slower starch hydrolysis and, consequently, lower postprandial glycemia compared with bread or couscous prepared from the same durum wheat semolina flour in healthy adults. The postprandial in vivo trials were registered at clinicaltrials.gov as NCT03098017 and NCT03104686.


Assuntos
Glucose , Insulina , Mastigação , Período Pós-Prandial , Adulto , Humanos , Glicemia/metabolismo , Pão , Glucose/metabolismo , Insulina/metabolismo , Amido/metabolismo , Triticum/química , Refeições
4.
J Nutr ; 152(4): 994-1005, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669959

RESUMO

BACKGROUND: Structure and protein-starch interactions in pasta products can be responsible for lower postprandial glycemic responses compared with other cereal foods. OBJECTIVES: We tested the effect on postprandial glucose metabolism induced by 2 pasta products, couscous, and bread, through their structural changes during mastication and simulated gastric digestion. METHODS: Two randomized controlled trials (n = 30/trial) in healthy, normal-weight adults (mean BMI of 23.9 kg/m2 (study 1) and 23.0 kg/m2 (study 2)) evaluated postprandial glucose metabolism modulation to portions of durum wheat semolina spaghetti, penne, couscous, and bread each containing 50 g available carbohydrate. A mastication trial involving 26 normal-weight adults was conducted to investigate mastication processes and changes in particle size distribution and microstructure (light microscopy) of boluses after mastication and in vitro gastric digestion. RESULTS: Both pasta products resulted in lower areas under the 2-h curve for blood glucose (-40% for spaghetti and -22% for penne compared with couscous; -41% for spaghetti and -30% for penne compared with bread), compared with the other grain products (P < 0.05). Pasta products required more chews (spaghetti: 34 ± 18; penne: 38 ± 20; bread: 27 ± 13; couscous: 24 ± 17) and longer oral processing (spaghetti: 21 ± 13 s; penne: 23 ± 14 s; bread: 18 ± 9 s; couscous: 14 ± 10 s) compared with bread or couscous (P < 0.01). Pastas contained more large particles (46-67% of total particle area) compared with bread (0-30%) and couscous (1%) after mastication and in vitro gastric digestion. After in vitro gastric digestion, pasta samples still contained large areas of nonhydrolyzed starch embedded within the protein network; the protein in bread and couscous was almost entirely digested, and the starch was hydrolyzed. CONCLUSIONS: Preservation of the pasta structure during mastication and gastric digestion explains slower starch hydrolysis and, consequently, lower postprandial glycemia compared with bread or couscous prepared from the same durum wheat semolina flour in healthy adults.The postprandial in vivo trials were registered at clinicaltrials.gov as NCT03098017 and NCT03104686.


Assuntos
Glucose , Insulinas , Adulto , Glicemia/metabolismo , Pão , Glucose/metabolismo , Humanos , Insulina , Mastigação , Amido/metabolismo , Triticum/química
5.
Rheumatology (Oxford) ; 61(6): 2682-2693, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34559222

RESUMO

OBJECTIVE: SSc is a complex disease characterized by vascular abnormalities and inflammation culminating in hypoxia and excessive fibrosis. Previously, we identified chemokine (C-X-C motif) ligand 4 (CXCL4) as a novel predictive biomarker in SSc. Although CXCL4 is well-studied, the mechanisms driving its production are unclear. The aim of this study was to elucidate the mechanisms leading to CXCL4 production. METHODS: Plasmacytoid dendritic cells (pDCs) from 97 healthy controls and 70 SSc patients were cultured in the presence of hypoxia or atmospheric oxygen level and/or stimulated with several toll-like receptor (TLR) agonists. Further, pro-inflammatory cytokine production, CXCL4, hypoxia-inducible factor (HIF) -1α and HIF-2α gene and protein expression were assessed using ELISA, Luminex, qPCR, FACS and western blot assays. RESULTS: CXCL4 release was potentiated only when pDCs were simultaneously exposed to hypoxia and TLR9 agonist (P < 0.0001). Here, we demonstrated that CXCL4 production is dependent on the overproduction of mitochondrial reactive oxygen species (mtROS) (P = 0.0079) leading to stabilization of HIF-2α (P = 0.029). In addition, we show that hypoxia is fundamental for CXCL4 production by umbilical cord CD34 derived pDCs. CONCLUSION: TLR-mediated activation of immune cells in the presence of hypoxia underpins the pathogenic production of CXCL4 in SSc. Blocking either mtROS or HIF-2α pathways may therapeutically attenuate the contribution of CXCL4 to SSc and other inflammatory diseases driven by CXCL4.


Assuntos
Fator Plaquetário 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Escleroderma Sistêmico , Receptor Toll-Like 9 , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Dendríticas/metabolismo , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia
6.
Foods ; 10(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922161

RESUMO

Pasta is a carbohydrate-rich food with a low glycemic index (GI) and is one of the main sources of slowly digestible starch (SDS). The presence of bran fractions (BFs) in pasta may enhance its health potential, owing to the content of fiber, micronutrients, and bioactive compounds; however, at the same time, BF may affect starch digestibility. In this study, the bioaccessibility of starch in pasta made with BF-enriched semolina (BF pasta), or only with micronized debranned kernel (DK pasta), and a control pasta made with traditional semolina was evaluated by applying two different in vitro models. The control pasta showed a percentage of SDS about four-fold higher than that of the BF pasta and 1.5-fold higher than that of the DK pasta (p < 0.05). The amount of starch released during simulated gastrointestinal digestion was slightly lower, but not significantly different, for the control pasta than for both the BF and DK pasta. These results suggest that the presence of a higher amount of dietary fiber in BF pasta can affect the structure of the food matrix, interfering with the formation of the gluten network, water absorption, and starch granule accessibility, while micronization could enhance starch digestibility due to starch gelatinization. These findings emphasize the need to optimize the process for producing fiber-rich pasta without affecting its low starch digestibility and, consequently, its GI.

7.
J Clin Med ; 10(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573268

RESUMO

Compelling evidence shows the involvement of plasmacytoid dendritic cells (pDCs) in systemic sclerosis (SSc) pathogenesis. This study investigated whether microRNAs (miRNAs) are involved in the dysregulation of pDCs in SSc patients already at early stages. RNA from circulating pDCs was isolated from two independent cohorts of SSc patients with different disease phenotypes, and individuals with Raynaud's phenomenon, for microRNA profiling and RNA-sequencing analysis. Proteomic analysis was exploited to identify novel direct miRNA targets at the protein level. Twelve and fifteen miRNAs were differentially expressed in at least one group of patients compared to healthy controls in discovery cohort I and II, respectively. Of note, miR-126 and miR-139-5p were upregulated in both preclinical and definite SSc patients and correlated with the expression of type I interferon (IFN)-responsive genes. Toll-like receptor 9 (TLR9) stimulation of healthy pDCs upregulated the expression of both miRNAs, similarly to what was observed in patients. The proteomic analysis identified USP24 as a novel target of miR-139-5p. The expression level of USP24 was inversely correlated with miR-139-5p expression in SSc patients and induced by TLR9 stimulation in healthy pDCs. These findings demonstrated that the miRNA profile is altered in pDCs of SSc patients already at early stages of the disease and indicate their potential contribution to pDC activation observed in patients.

8.
Nutr Metab Cardiovasc Dis ; 31(2): 615-625, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229200

RESUMO

BACKGROUND AND AIMS: Post-prandial glycemic response (PPGR) depends on the intrinsic characteristic of the carbohydrate-rich foods as well as on the amount and type of other nutrients. This study aimed to explore whether the addition of condiments can affect the difference in PPGR between a low and a medium-high Glycemic Index (GI) food. METHODS AND RESULTS: Spaghetti (S) and rice ® were consumed plain and after adding tomato sauce and extra virgin olive oil (TEVOO), or pesto sauce (P). The GI of R (63 ± 3) was statistically higher than that of S (44 ± 7) (p = 0.003). The Incremental Area Under the Curve (IAUC) for R was significantly greater than S (124.2 ± 12.1 and 82.1 ± 12.9 mmol∗min/L respectively) (p = 0.016) for blood glucose but not for insulin (1192.6 ± 183.6 and 905.2 ± 208.9 mU∗min/L, respectively) (p = 0.076). There were no significant differences after the addition of either TEVOO or P. The postprandial peaks of blood glucose and insulin for R (6.7 ± 0.3 mmol/L and 36.4 ± 4.9 mU/L, respectively) were significantly higher compared to S (6.0 ± 0.2 mmol/L and 26.7 ± 3.6 mU/L, respectively) (p = 0.033 and p = 0.025). The postprandial peak for insulin remained significantly higher with P (36.8 ± 3.7 and 28.6 ± 2.9 mU/L for R + P and S + P, p = 0.045) but not with EVOO (p = 0.963). Postprandial peaks for blood glucose were not significantly different with condiment. CONCLUSIONS: The differences in PPGR were significant between spaghetti and rice consumed plain, they reduced or disappeared with fat adding, depending on the type of condiment used. REGISTRATION NUMBER: (www.clinicaltrial.gov):NCT03104712.


Assuntos
Glicemia/metabolismo , Condimentos , Carboidratos da Dieta , Gorduras na Dieta , Índice Glicêmico , Insulina/sangue , Oryza , Período Pós-Prandial , Adulto , Biomarcadores/sangue , Estudos Cross-Over , Feminino , Frutas , Humanos , Itália , Solanum lycopersicum , Masculino , Azeite de Oliva , Fatores de Tempo , Adulto Jovem
9.
Front Immunol ; 11: 2149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042127

RESUMO

Fibrosis is a condition shared by numerous inflammatory diseases. Our incomplete understanding of the molecular mechanisms underlying fibrosis has severely hampered effective drug development. CXCL4 is associated with the onset and extent of fibrosis development in multiple inflammatory and fibrotic diseases. Here, we used monocyte-derived cells as a model system to study the effects of CXCL4 exposure on dendritic cell development by integrating 65 longitudinal and paired whole genome transcriptional and methylation profiles. Using data-driven gene regulatory network analyses, we demonstrate that CXCL4 dramatically alters the trajectory of monocyte differentiation, inducing a novel pro-inflammatory and pro-fibrotic phenotype mediated via key transcriptional regulators including CIITA. Importantly, these pro-inflammatory cells directly trigger a fibrotic cascade by producing extracellular matrix molecules and inducing myofibroblast differentiation. Inhibition of CIITA mimicked CXCL4 in inducing a pro-inflammatory and pro-fibrotic phenotype, validating the relevance of the gene regulatory network. Our study unveils that CXCL4 acts as a key secreted factor driving innate immune training and forming the long-sought link between inflammation and fibrosis.


Assuntos
Células Dendríticas/citologia , Fibrose/imunologia , Redes Reguladoras de Genes , Inflamação/imunologia , Fator Plaquetário 4/fisiologia , Transcriptoma , Células Cultivadas , Técnicas de Reprogramação Celular , Metilação de DNA , Árvores de Decisões , Decitabina/farmacologia , Fibroblastos , Fibrose/genética , Humanos , Inflamação/genética , Monócitos/citologia , Análise de Escalonamento Multidimensional , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/fisiologia , Poli I-C/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA-Seq , Transativadores/antagonistas & inibidores , Transativadores/fisiologia
10.
Nutr Metab Cardiovasc Dis ; 30(6): 984-995, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32402585

RESUMO

BACKGROUND & AIMS: The effect of pasta consumption within a low-energy Mediterranean diet on body weight regulation has been scarcely explored. This paper investigates the effect of two Mediterranean diets, which differed for lower or higher pasta intake, on body weight change in individuals with obesity. METHODS & RESULTS: Forty-nine volunteers finished a quasi-experimental 6-month two-parallel group dietary intervention. Participants were assigned to a low-energy high pasta (HP) or to a low-energy low Pasta (LP) group on the basis of their pasta intake (HP ≥ 5 or LP ≤ 3 times/week). Anthropometrics, blood pressure and heart rate were measured every month. Weight maintenance was checked at month 12. Body composition (bioelectrical impedance analysis, BIA), food intake (24-h recall plus a 7-day carbohydrate record) and the perceived quality of life (36-item short-form health survey, SF-36) were assessed at baseline, 3 and 6 months. Blood samples were collected at baseline and month 6 to assess glucose and lipid metabolism. After 6-month intervention, body weight reduction was -10 ± 8% and -7 ± 4% in HP and LP diet, respectively, and it remained similar at month 12. Both dietary interventions improved anthropometric parameters, body composition, glucose and lipid metabolism, but no significant differences were observed between treatment groups. No differences were observed for blood pressure and heart rate between treatments and among times. HP diet significantly improved perception of quality of life for the physical component. CONCLUSIONS: Independent of pasta consumption frequency, low-energy Mediterranean diets were successful in improving anthropometrics, physiological parameters and dietary habits after a 6-month weight-loss intervention. This trial was registered at clinicaltrials.gov as NCT03341650.


Assuntos
Dieta com Restrição de Carboidratos , Dieta Mediterrânea , Carboidratos da Dieta/administração & dosagem , Obesidade/dietoterapia , Redução de Peso , Adulto , Composição Corporal , Dieta com Restrição de Carboidratos/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados não Aleatórios como Assunto , Obesidade/diagnóstico , Obesidade/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
11.
J Autoimmun ; 111: 102444, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32284212

RESUMO

OBJECTIVE: To analyze how monocyte and macrophage exposure to CXCL4 induces inflammatory and fibrotic processes observed in Systemic sclerosis (SSc) patients. METHODS: In six independent experiments, monocytes of healthy controls (HC) and SSc patients were stimulated with CXCL4, TLR-ligands, IFNɑ or TGFß and the secretion of cytokines in the supernatant was assessed by multiplex immunoassays. PDGF-BB production by monocyte-derived macrophages was quantified using immunoassays. The number of monocytes and PDGF-BB in circulation was quantified in HC and SSc patients with the Sysmex XT-1800i haematology counter and immunoassays. Intracellular PDGF-BB was quantified in monocytes by Western blot. PDGF-receptor inhibition was achieved using siRNA-mediated knockdown or treatment with Crenolanib. The production of inflammatory mediators and extracellular matrix (ECM) components by dermal fibroblasts was analyzed by qPCR, ELISA and ECM deposition assays. RESULTS: SSc and HC monocytes released PDGF-BB upon stimulation with CXCL4. Conversely, TLR ligands, IFNɑ or TGFß did not induce PDGF-bb release. PDGF-BB plasma levels were significantly (P = 0.009) higher in diffuse SSc patients (n = 19), compared with HC (n = 21). In healthy dermal fibroblasts, PDGF-BB enhanced TNFɑ-induced expression of inflammatory cytokines and increased ECM production. Comparable results were observed in fibroblasts cultured in supernatant taken from macrophages stimulated with CXCL4. This effect was almost completely abrogated by inhibition of the PDGF-receptor using Crenolanib. CONCLUSION: Our findings demonstrate that CXCL4 can drive fibroblast activation indirectly via PDGF-BB production by myeloid cells. Hence, targeting PDGF-BB or CXCL4-induced PDGF-BB release could be clinically beneficial for patients with SSc.


Assuntos
Becaplermina/metabolismo , Fibroblastos/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Fator Plaquetário 4/metabolismo , Escleroderma Sistêmico/imunologia , Adulto , Idoso , Benzimidazóis/farmacologia , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperidinas/farmacologia , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores
12.
Eur J Immunol ; 50(1): 119-129, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31424086

RESUMO

Systemic sclerosis (SSc), systemic lupus erythematosus (SLE) and primary Sjögrens syndrome (pSS) are clinically distinct systemic autoimmune diseases (SADs) that share molecular pathways. We quantified the frequency of circulating immune-cells in 169 patients with these SADs and 44 healty controls (HC) using mass-cytometry and assessed the diagnostic value of these results. Alterations in the frequency of immune-cell subsets were present in all SADs compared to HC. Most alterations, including a decrease of CD56hi NK-cells in SSc and IgM+ Bcells in pSS, were disease specific; only a reduced frequency of plasmacytoid dendritic cells was common between all SADs Strikingly, hierarchical clustering of SSc patients identified 4 clusters associated with different clinical phenotypes, and 9 of the 12 cell subset-alterations in SSc were also present during the preclinical-phase of the disease. Additionally, we found a strong association between the use of prednisone and alterations in B-cell subsets. Although differences in immune-cell frequencies between these SADs are apparent, the discriminative value thereof is too low for diagnostic purposes. Within each disease, mass cytometry analyses revealed distinct patterns between endophenotypes. Given the lack of tools enabling early diagnosis of SSc, our results justify further research into the value of cellular phenotyping as a diagnostic aid.


Assuntos
Citometria de Fluxo/métodos , Lúpus Eritematoso Sistêmico/imunologia , Escleroderma Sistêmico/imunologia , Síndrome de Sjogren/imunologia , Adulto , Idoso , Feminino , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Masculino , Pessoa de Meia-Idade , Fenótipo , Escleroderma Sistêmico/diagnóstico , Síndrome de Sjogren/diagnóstico
13.
Arthritis Rheumatol ; 71(10): 1711-1722, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31012544

RESUMO

OBJECTIVE: To analyze the potential role of semaphorin 4A (Sema4A) in inflammatory and fibrotic processes involved in the pathology of systemic sclerosis (SSc). METHODS: Sema4A levels in the plasma of healthy controls (n = 11) and SSc patients (n = 20) were determined by enzyme-linked immunosorbent assay (ELISA). The expression of Sema4A and its receptors in monocytes and CD4+ T cells from healthy controls and SSc patients (n = 6-7 per group) was determined by ELISA and flow cytometry. Th17 cytokine production by CD4+ T cells (n = 5-7) was analyzed by ELISA and flow cytometry. The production of inflammatory mediators and extracellular matrix (ECM) components by dermal fibroblast cells (n = 6) was analyzed by quantitative polymerase chain reaction, ELISA, Western blotting, confocal microscopy, and ECM deposition assay. RESULTS: Plasma levels of Sema4A, and Sema4A expression by circulating monocytes and CD4+ T cells, were significantly higher in SSc patients than in healthy controls (P < 0.05). Inflammatory mediators significantly up-regulated the secretion of Sema4A by monocytes and CD4+ T cells from SSc patients (P < 0.05 versus unstimulated SSc cells). Functional assays showed that Sema4A significantly enhanced the expression of Th17 cytokines induced by CD3/CD28 in total CD4+ T cells as well in different CD4+ T cell subsets (P < 0.05 versus unstimulated SSc cells). Finally, Sema4A induced a profibrotic phenotype in dermal fibroblasts from both healthy controls and SSc patients, which was abrogated by blocking or silencing the expression of Sema4A receptors. CONCLUSION: Our findings indicate that Sema4A plays direct and dual roles in promoting inflammation and fibrosis, 2 main features of SSc, suggesting that Sema4A might be a novel therapeutic target in SSc.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Fibroblastos/metabolismo , Fibrose/metabolismo , Inflamação/metabolismo , Monócitos/imunologia , Escleroderma Sistêmico/metabolismo , Semaforinas/metabolismo , Adulto , Western Blotting , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Fibroblastos/imunologia , Fibroblastos/patologia , Fibrose/patologia , Humanos , Inflamação/imunologia , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/patologia , Pele/citologia , Células Th17/imunologia
14.
Front Immunol ; 10: 100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804934

RESUMO

TLR4 activation initiates a signaling cascade leading to the production of type I IFNs and of the downstream IFN-stimulated genes (ISGs). Recently, a number of IFN-induced long non-coding RNAs (lncRNAs) that feed-back regulate the IFN response have been identified. Dysregulation of this process, collectively known as the "Interferon (IFN) Response," represents a common molecular basis in the development of autoimmune and autoinflammatory disorders. Concurrently, alteration of lncRNA profile has been described in several type I IFN-driven autoimmune diseases. In particular, both TLR activation and the upregulation of ISGs in peripheral blood mononuclear cells have been identified as possible contributors to the pathogenesis of systemic sclerosis (SSc), a connective tissue disease characterized by vascular abnormalities, immune activation, and fibrosis. However, hitherto, a potential link between specific lncRNA and the presence of a type I IFN signature remains unclear in SSc. In this study, we identified, by RNA sequencing, a group of lncRNAs related to the IFN and anti-viral response consistently modulated in a type I IFN-dependent manner in human monocytes in response to TLR4 activation by LPS. Remarkably, these lncRNAs were concurrently upregulated in a total of 46 SSc patients in different stages of their disease as compared to 18 healthy controls enrolled in this study. Among these lncRNAs, Negative Regulator of the IFN Response (NRIR) was found significantly upregulated in vivo in SSc monocytes, strongly correlating with the IFN score of SSc patients. Weighted Gene Co-expression Network Analysis showed that NRIR-specific modules, identified in the two datasets, were enriched in "type I IFN" and "viral response" biological processes. Protein coding genes common to the two distinct NRIR modules were selected as putative NRIR target genes. Fifteen in silico-predicted NRIR target genes were experimentally validated in NRIR-silenced monocytes. Remarkably, induction of CXCL10 and CXCL11, two IFN-related chemokines associated with SSc pathogenesis, was reduced in NRIR-knockdown monocytes, while their plasmatic level was increased in SSc patients. Collectively, our data show that NRIR affects the expression of ISGs and that dysregulation of NRIR in SSc monocytes may account, at least in part, for the type I IFN signature present in SSc patients.


Assuntos
Interferon Tipo I/genética , Monócitos/imunologia , RNA Longo não Codificante/genética , Escleroderma Sistêmico/genética , Adulto , Idoso , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Lipopolissacarídeos/imunologia , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/imunologia , Escleroderma Sistêmico/imunologia , Análise de Sequência de RNA , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Regulação para Cima
15.
Ann Rheum Dis ; 78(4): 529-538, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30793699

RESUMO

BACKGROUND AND OBJECTIVE: Systemic sclerosis (SSc) is a severe autoimmune disease, in which the pathogenesis is dependent on both genetic and epigenetic factors. Altered gene expression in SSc monocytes, particularly of interferon (IFN)-responsive genes, suggests their involvement in SSc development. We investigated the correlation between epigenetic histone marks and gene expression in SSc monocytes. METHODS: Chromatin immunoprecipitation followed by sequencing (ChIPseq) for histone marks H3K4me3 and H3K27ac was performed on monocytes of nine healthy controls and 14 patients with SSc. RNA sequencing was performed in parallel to identify aberrantly expressed genes and their correlation with the levels of H3K4me3 and H3K27ac located nearby their transcription start sites. ChIP-qPCR assays were used to verify the role of bromodomain proteins, H3K27ac and STATs on IFN-responsive gene expression. RESULTS: 1046 and 534 genomic loci showed aberrant H3K4me3 and H3K27ac marks, respectively, in SSc monocytes. The expression of 381 genes was directly and significantly proportional to the levels of such chromatin marks present near their transcription start site. Genes correlated to altered histone marks were enriched for immune, IFN and antiviral pathways and presented with recurrent binding sites for IRF and STAT transcription factors at their promoters. IFNα induced the binding of STAT1 and STAT2 at the promoter of two of these genes, while blocking acetylation readers using the bromodomain BET family inhibitor JQ1 suppressed their expression. CONCLUSION: SSc monocytes have altered chromatin marks correlating with their IFN signature. Enzymes modulating these reversible marks may provide interesting therapeutic targets to restore monocyte homeostasis to treat or even prevent SSc.


Assuntos
Epigênese Genética , Código das Histonas/genética , Monócitos/imunologia , Escleroderma Sistêmico/genética , Adulto , Idoso , Azepinas/farmacologia , Estudos de Casos e Controles , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/imunologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Histonas/genética , Humanos , Interferon-alfa/imunologia , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Escleroderma Sistêmico/imunologia , Triazóis/farmacologia
16.
J Autoimmun ; 89: 162-170, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29371048

RESUMO

OBJECTIVE: MicroRNAs (miRNAs) are regulatory molecules, which have been addressed as potential biomarkers and therapeutic targets in rheumatic diseases. Here, we investigated the miRNA signature in the serum of systemic sclerosis (SSc) patients and we further assessed their expression in early stages of the disease. METHODS: The levels of 758 miRNAs were evaluated in the serum of 26 SSc patients as compared to 9 healthy controls by using an Openarray platform. Three miRNAs were examined in an additional cohort of 107 SSc patients and 24 healthy donors by single qPCR. MiR-483-5p expression was further analysed in the serum of patients with localized scleroderma (LoS) (n = 22), systemic lupus erythematosus (SLE) (n = 33) and primary Sjögren's syndrome (pSS) (n = 23). The function of miR-483-5p was examined by transfecting miR-483-5p into primary human dermal fibroblasts and pulmonary endothelial cells. RESULTS: 30 miRNAs were significantly increased in patients with SSc. Of these, miR-483-5p showed reproducibly higher levels in an independent SSc cohort and was also elevated in patients with preclinical-SSc symptoms (early SSc). Notably, miR-483-5p was not differentially expressed in patients with SLE or pSS, whereas it was up-regulated in LoS, indicating that this miRNA could be involved in the development of skin fibrosis. Consistently, miR-483-5p overexpression in fibroblasts and endothelial cells modulated the expression of fibrosis-related genes. CONCLUSIONS: Our findings showed that miR-483-5p is up-regulated in the serum of SSc patients, from the early stages of the disease onwards, and indicated its potential function as a fine regulator of fibrosis in SSc.


Assuntos
Células Endoteliais/fisiologia , Fibroblastos/fisiologia , MicroRNAs/genética , Escleroderma Sistêmico/genética , Pele/patologia , Adulto , Idoso , Estudos de Coortes , Feminino , Fibrose , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima
17.
Int J Food Sci Nutr ; 69(6): 676-681, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29199499

RESUMO

Breakfast foods with lower glycaemic responses are associated with better body weight control. Glycaemic index (GI) values of some commonly consumed breakfast foods in Italy were determined and compared, along with macronutrients. Cakes/pastries were low-medium GI (44-60), with high-sugar and saturated fat and low-fibre. Generally, mueslis and breads were medium GI (62-66 and 59-76, respectively) with higher fibre and lower saturated fat and sugar. The addition of spreads to bread lowered GI (47-66) but increased sugar and saturated fat.


Assuntos
Desjejum , Análise de Alimentos , Índice Glicêmico , Adolescente , Adulto , Idoso , Pão , Carboidratos da Dieta , Gorduras na Dieta , Fibras na Dieta , Grão Comestível , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Avaliação Nutricional , Adulto Jovem
18.
Clin Rev Allergy Immunol ; 55(3): 312-331, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28866756

RESUMO

Systemic sclerosis (SSc) is a highly heterogeneous disease caused by a complex molecular circuitry. For decades, clinical and molecular research focused on understanding the primary process of fibrosis. More recently, the inflammatory, immunological and vascular components that precede the actual onset of fibrosis, have become a matter of increasing scientific scrutiny. As a consequence, the field has started to realize that the early identification of this syndrome is crucial for optimal clinical care as well as for understanding its pathology. The cause of SSc cannot be appointed to a single molecular pathway but to a multitude of molecular aberrances in a spatial and temporal matter and on the backbone of the patient's genetic predisposition. These alterations underlie the plethora of signs and symptoms which patients experience and clinicians look for, ultimately culminating in fibrotic features. To solve this complexity, a close interaction among the patient throughout its "journey," the clinician through its clinical assessments and the researcher with its experimental design, seems to be required. In this review, we aimed to highlight the features of SSc through the eyes of these three professionals, all with their own expertise and opinions. With this unique setup, we underscore the importance of investigating the role of environmental factors in the onset and perpetuation of SSc, of focusing on the earliest signs and symptoms preceding fibrosis and on the application of holistic research approaches that include a multitude of potential molecular alterations in time in an unbiased fashion, in the search for a patient-tailored cure.


Assuntos
Necessidades e Demandas de Serviços de Saúde , Escleroderma Sistêmico/epidemiologia , Gerenciamento Clínico , Suscetibilidade a Doenças , Conhecimentos, Atitudes e Prática em Saúde , Pessoal de Saúde , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Pacientes , Medicina de Precisão/métodos , Escleroderma Sistêmico/diagnóstico , Escleroderma Sistêmico/etiologia , Escleroderma Sistêmico/terapia
19.
Arthritis Rheumatol ; 69(12): 2359-2369, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28859262

RESUMO

OBJECTIVE: Patients with definite systemic sclerosis (SSc) who lack fibrotic features can be stratified into an intermediate stage of disease severity between preclinical/early SSc (EaSSc) and fibrotic subsets (limited cutaneous SSc [lcSSc] and diffuse cutaneous SSc [dcSSc]). The aim of the present study was to molecularly characterize nonfibrotic SSc and EaSSc on the basis of a broad panel of serum markers of inflammation and tissue damage, in order to increase the knowledge of the pathophysiologic mechanisms underlying SSc progression before the development of fibrosis. METHODS: An 88-plex immunoassay was performed in serum samples from a discovery cohort composed of 21 patients with EaSSc (meeting the LeRoy and Medsger criteria), 15 with nonfibrotic SSc (meeting the American College of Rheumatology/European League Against Rheumatism 2013 classification criteria, without skin or lung fibrosis), and 11 healthy controls. Analyte concentrations that were consistently significantly different at the exploratory P value threshold of 0.1 were selected for replication analysis in a larger group composed of 47 patients with EaSSc, 48 with nonfibrotic SSc, and 43 healthy controls, as well as 51 patients with lcSSc and 35 with dcSSc. The value of the replicated molecules in predicting SSc progression (at a family-wise error rate of 0.05) was tested. RESULTS: Based on the results of the explorative analysis, 16 molecules were selected for testing in the replication set. The results showed that CXCL10, CXCL11, tumor necrosis factor receptor type II (TNFRII), and chitinase 3-like protein 1 levels were significantly increased in patients with EaSSc and those with nonfibrotic SSc as compared to healthy controls. The disease in patients with high concentrations of CXCL10 and TNFRII was also characterized by a faster rate of progression from EaSSc and from nonfibrotic SSc to worse disease stages. CONCLUSION: SSc patients with preclinical/early SSc and those with established, yet nonfibrotic, disease exhibit clear molecular alterations that are associated with faster rates of disease evolution. These data open novel avenues for disease interception in SSc.


Assuntos
Quimiocina CXCL10/sangue , Quimiocina CXCL11/sangue , Proteína 1 Semelhante à Quitinase-3/sangue , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Escleroderma Sistêmico/sangue , Índice de Gravidade de Doença , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Progressão da Doença , Feminino , Fibrose , Humanos , Masculino , Pessoa de Meia-Idade , Fibrose Pulmonar/sangue , Fibrose Pulmonar/etiologia , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/patologia
20.
Food Funct ; 8(7): 2368-2393, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28664202

RESUMO

Cereal-based products, like breads, are a vehicle for bioactive compounds, including polyphenols. The health effects of polyphenols like phenolic acids (PAs) are dependent on their bioaccessibility and bioavailability. The present review summarizes the current understanding of potential strategies to improve phenolic bioaccessibility and bioavailability and the main findings of in vitro and in vivo studies investigating these strategies applied to breads, including the use of raw ingredients with greater phenolic content and different pre-processing technologies, such as fermentation and enzymatic treatment of ingredients. There is considerable variability between in vitro studies, mainly resulting from the use of different methodologies, highlighting the need for standardization. Of the few in vivo bioavailability studies identified, acute, single-dose studies demonstrate that modifications to selected raw materials and bioprocessing of bran could increase the bioavailability, but not necessarily the net content, of bread phenolics. The two medium-term identified dietary interventions also demonstrated greater phenolic content, resulting from the modification of the raw materials used. Overall, the findings suggest that several strategies can be used to develop new bread products with greater phenolic bioaccessibility and bioavailability. However, due to the large variability and the few studies available, further investigations are required to determine better the usefulness of these innovative processes.


Assuntos
Pão/análise , Fenóis/metabolismo , Extratos Vegetais/metabolismo , Animais , Disponibilidade Biológica , Manipulação de Alimentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...